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Abstract: Variations in the thickness of retinal layers serve as early diagnostic indicators for various
fundus diseases, and precise segmentation of these layers is essential for accurately measuring their
thickness. Optical Coherence Tomography (OCT) is an important non-invasive tool for diagnosing
various eye diseases through the acquisition and layering of retinal images. However, noise and
artifacts in images present significant challenges in accurately segmenting retinal layers. We propose
a novel method for retinal layer segmentation that addresses these issues. This method utilizes
ConvNeXt as the backbone network to enhance multi-scale feature extraction and incorporates a
Transformer–CNN module to improve global processing capabilities. This method has achieved
the highest segmentation accuracy on the Retina500 dataset, with a mean Intersection over Union
(mIoU) of 81.26% and an accuracy (Acc) of 91.38%, and has shown excellent results on the public
NR206 dataset.

Keywords: retina layer; segmentation; OCT; transformer; MT_Net

1. Introduction

In recent years, the widespread use of electronic devices in daily work and leisure
activities has placed great strain on our visual system. Coupled with environmental
influences, genetic factors, and the natural aging process, these changes have collectively
contributed to an increase in the prevalence of eye diseases [1]. The effective prevention and
treatment of these conditions have become increasingly crucial due to their profound impact
on individuals’ quality of life. The predominant eye diseases today include glaucoma [2],
diabetic retinopathy [3], and age-related macular degeneration [4]. These conditions often
induce alterations in retinal thickness, and in severe cases may lead to the disappearance
of retinal cell layers [5]. For instance, glaucoma is associated with degeneration of the
nerve fiber layer [6], while age-related macular degeneration can cause the thinning or
disappearance of the ganglion cell layer [7]. Additionally, diabetes often leads to the
development of macular edema [8]. Early detection of these subtle retinal changes through
screening can significantly enhance disease prevention efforts and minimize the risk of
vision impairment. Therefore, the precise quantitative analysis of the thickness of each
retinal cell layer is essential for assessing the severity of these diseases and monitoring their
progression [9].

OCT represents a significant advancement in the field of in vivo biological tissue
imaging and has rapidly evolved in recent years [10]. Widely adopted in ophthalmological
clinical diagnosis, OCT is prized for its non-contact, high-resolution imaging, and non-
invasive properties [11]. Typically, researchers utilize retinal layer boundary segmentation
to measure thickness changes, which is vital for the effective detection and prevention
of retinal diseases [12]. However, manual segmentation of these layers in OCT images
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is both time-consuming and subjective, thereby impacting the efficiency and accuracy of
clinical diagnoses [13]. The advent of deep learning has significantly advanced retinal layer
segmentation technology. In contrast to traditional methods that require the construction
of mathematical models, deep learning approaches offer substantial generalizability with
minimal need for prior knowledge, as exemplified by ReLayNet. This model enhances
clinical diagnostics by automating the segmentation process, significantly reducing the time
and subjectivity associated with manual methods while maintaining high accuracy in the
delineation of retinal layers [14]. Moreover, OctNet serves as a notable example, utilizing a
deep learning-based three-dimensional convolutional network capable of effectively han-
dling the spatial complexities of retinal OCT images and achieving efficient segmentation
of multiple retinal layers [15]. By leveraging a deeper network architecture and optimized
feature learning strategies, OctNet significantly enhances the ability to extract precise layer
boundaries from noisy data, thereby providing a more accurate and reliable tool for clinical
diagnostics. The development of these technologies marks substantial progress in the
application of deep learning in medical image processing.

In contemporary deep learning frameworks, Convolutional Neural Networks (CNN)
and Transformer are cornerstone technologies. CNN excels in extracting detailed features
from images, making it ideal for identifying complex structures and patterns. However,
it often falters in synthesizing global contextual information, affecting the coherence and
overall understanding of the image content [16]. Conversely, Transformer utilizes its
global attention mechanisms to effectively process extensive contextual information, yet
sometimes struggles with detail precision in regions with intricate local characteristics [17].
Furthermore, in the domain of OCT imaging, challenges such as blood flow noise and
other artifacts complicate the segmentation process, highlighting the need for advanced
methodologies. This scenario underscores the imperative for developing novel retinal
layer segmentation strategies that synergistically harness the strengths of both CNN and
Transformer, thereby mitigating individual limitations and enhancing diagnostic accuracy.

In this paper, we introduce a novel retinal layer segmentation method, employing
a multi-scale structure. Our method utilizes the advanced ConvNeXt architecture as the
backbone for robust feature extraction. Uniquely, we design a Transformer–CNN feature
decoder module that employs the Transformer block not as a traditional encoding module
but as an optimization tool to fully leverage the global attention mechanism inherent in the
Transformer architecture. We validate the effectiveness of our approach through rigorous
testing on two distinct datasets: one proprietary dataset, as illustrated in Figure 1, and
another dataset, which is publicly available. Our results, including detailed ablation studies,
demonstrate the superiority of our enhanced structural design.
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Figure 1. OCT B-scan images display the retinal layers of healthy human eyes alongside annotations
of each specific retinal tissue layer. Figure (a) presents the original B-scan image of the retinal
layers, while Figure (b) illustrates the annotated ground truth, identifying the eight distinct layers of
the retina: the Nerve Fiber Layer (NFL), Ganglion Cell Layer + Inner Plexiform Layer (GCL + IPL),
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Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear Layer (ONL), External
Limiting Membrane + Inner Segments (ELM + IS), Outer Segments (OS), and Retinal Pigment
Epithelium (RPE). Annotations for regions classified as background are also included.

2. Related Work

Recently, a variety of methods have been employed extensively in the study of retinal
layer boundary segmentation. These include thresholding [18], active contour models [19],
Markov random field models [20], level set models, and graph theory [21]. For instance,
Chiu et al. developed a method combining graph theory with dynamic programming
to automatically segment seven retinal layers. In their approach, each pixel in an OCT
image is mapped to a node in a graph, with edge weights between neighboring nodes
calculated based on the vertical luminance gradient values of the pixels [22]. Similarly,
Chen et al. introduced a graph-cutting algorithm incorporated into a 3D graph search
method, which segments retinal layers and extracts fluid regions within the retina [23].
Naz et al. employed a combination of structural tensor and kernel regression models to
segment retinal layer boundaries while preserving the complex structural information
inherent in OCT images [24]. Furthermore, Hussain et al. proposed a novel graph model
construction method that initially extracts groups of candidate boundary pixels using the
Canny edge detection operator, and subsequently using their endpoints as graph nodes.
The connections between these nodes are weighted based on three attributes: Euclidean
distance, slope similarity, and disjunction [25]. Although these traditional methods rely
on a priori knowledge derived from extensive projections and are supported by strong
theoretical foundations, they often lack generalizability. Specifically designed for certain
types of retinal images, their performance can be suboptimal in cases involving retinal
layer deformation, interlayer fluid accumulation, or the presence of scattering noise.

Deep learning has delivered impressive outcomes across various applications [26,27],
particularly in the rapid advancement of semantic segmentation within medical imag-
ing [28–30]. Notably, the U-net model, introduced in 2015, has set a high standard in medi-
cal semantic segmentation by combining efficiency with high performance [31]. Building on
this, the TransUnet model has been established as a benchmark for semantic segmentation
tasks. In the specific area of retinal layer segmentation, significant advancements have
been made. Roy et al. first introduced a fully convolutional network, ReLayNet, which
segments multiple retinal layers and delineates fluid regions. Following this, Iqbal et al.
developed the G-Net, enhancing it to reduce the complexity of vascular segmentation
architecture by optimizing the number of filters per layer and minimizing feature overlap,
thereby achieving superior performance in this field [32]. Furthermore, Gao et al. improved
the TransUnet network model for the automatic semantic segmentation of inner retinal
layers in OCT images, significantly enhancing the performance of the retinal segmentation
architecture. This method not only improves the overall semantic accuracy but also re-
duces computational demands, leading to improved outcomes in the segmentation of inner
retinal layers, thereby aiding ophthalmologists in clinical diagnostics [33]. Additionally,
Yao et al. introduced a network that utilizes global information fusion and dual decoder
collaboration for the joint segmentation of hard exudates and microglia in OCT images,
achieving notable success [34]. Finally, He et al. proposed an innovative end-to-end retinal
layer segmentation network based on ConvNeXt. This network employs a novel depth-
deficit-attention module and a multiscale structure to measure retinal layer thickness with
greater accuracy and stability [35].

3. Methodology
3.1. Overall Framework

Our proposed MT_Net employs a U-shaped architecture inspired by the U-Net frame-
work, with ConvNeXt serving as its core component. ConvNeXt, a Transformer-based
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visual model, is designed for the efficient extraction of multi-scale deep features, which
are crucial for image processing tasks. Specifically, our model processes retinal images
with dimensions (2, 1, H, W) as input, where the input image undergoes multi-scale fea-
ture extraction through the ConvNeXt network, and the features are designated as F_1,
F_2, F_3, and F_4. Initially, feature F_4 is upsampled and merged with feature F_3. To
maintain a balance between computational efficiency and effective feature transmission,
a Transformer module is integrated at this stage. After integration, the output from the
Transformer module undergoes depthwise separable convolution and further upsampling
before fusing with feature F_2. This procedure is repeated in subsequent layers. As the
network approaches its final layer, the processed feature maps are sequentially fused using
Concat modules and further refined through depthwise separable convolution. Finally,
these feature maps are processed by the Output Completion (OC) module, resulting in the
generation of the final output image. This structured approach not only ensures efficient
handling of features across multiple scales but also enhances the model’s capability to
process complex image data, making it highly suitable for sophisticated image processing
tasks. The overall network framework is depicted in Figure 2.
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3.2. ConvNeXt

ConvNeXt serves as the foundational backbone for feature extraction within our pro-
posed framework. Leveraging the inherent strengths of CNN, ConvNeXt adeptly captures
local feature information from input data. Its multi-layered architecture enables hierarchical
feature learning, allowing for the extraction of increasingly abstract and discriminative
features as data progress through the network. Furthermore, its parameter-efficient design
ensures computational efficiency without compromising the quality of extracted features.

Figure 3 illustrates the overall structure of the ConvNeXt network, which comprises
several normalization layers (LayerNorm), ConvNeXt Block modules, and Downsample
modules. These components systematically process the pre-processed input image to
sequentially extract features labeled as F1, F2, F3, and F4. Additionally, to meet specific
application requirements and enhance processing speed, we have refined the traditional
ConvNeXt by standardizing the dimensions across all stages to (128,128,128,128). This
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modification optimizes the network’s computational efficiency while ensuring that it
remains highly adaptable to various image-processing tasks.
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Figure 3. The proposed method framework. Figure (a) depicts the overall framework of the ConvNeXt
network, Figure (b) details the components of the ConvNeXt Block module, and Figure (c) illustrates
the composition of the Downsample module.

3.3. Transformer–CNN Feature Decoder Module

For feature extraction, CNN boasts remarkable efficacy in discerning local features,
while exhibiting limitations in comprehensively capturing global feature contexts. Due to
the exceptional ability of the Transformer block to capture long-range dependencies, it inher-
ently excels at processing global information, thereby demonstrating superior performance
in processing global information. In MT_Net, we introduce a novel Transformer–CNN
feature decoder block tailored to simultaneous global and local feature acquisition. Specifi-
cally, we opted to integrate the original Transformer block into our framework to enhance
model compatibility and minimize computational complexity.

Before the feature is processed by the Transformer block, the feature map F is first
converted into a 2D patch sequence as

FN ⇒ F′N =
{

xk
p ∈ RP2×c

∣∣∣k = 1, · · · , Z
}

, Z =
HW
P2 (1)

We use a trainable linear project to map the vector patch xp to a latent D-dimensional
embedding space. To encode the spatial information of the patches, we learn a specific
position embedding that is added to preserve the positional information in the patch
embedding as

z0 =
[

x0; x1
PE; x2

PE; · · · ; xN
p E
]
+ Epos, (2)
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where E ∈ R(P2·C)×D represents the patch embedding projection, e x0 is an additional
learnable vector concatenated with the remaining vectors to integrate the information of all
remaining vectors, [·; · · · ; ·] is the concatenation operator, and Epos ∈ R(Z+1)×D represents
the position embedding. Then, z0 is input into the Transformer layer

z′i = MSA(LN(zi−1)) + zi−1, i = 1 · · · L (3)

zi = MLP
(

LN
(
z′i
))

+ z′i, i = 1 · · · L. (4)

As shown in Figure 4, first through the first Layer Norm (LN) layer and then through
the Multi-head Self-attention (MSA) layer, MSA(LN(z0)) + z0 forms the residual structure
and obtains z′0. Then, after passing through the second LN layer, it enters the Multi-Layer
Perceptron (MLP) layer; here MSA(LN(z′0)) + z′0. once again forms the residual structure
and z1 is obtained (Equations (2) and (3)). At this point, the first Transformer layer is
finished. We have set three Transformer layers in our approach, so we have to cycle
three times.

zL =
[

x′0; x1′
p ; x2′

p ; · · · ; xN′
p

]
→
[

x1′
p ; x2′

p ; · · · ; xN′
p

]
(5)

When the zL outputs from the Transformer block, we have to remove the x′0 vector
from the zL, because only then can we reshape it to the same size of FN.
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4. Results and Discussion
4.1. Datasets

We conducted experimental studies utilizing the Retina500 and NR206 datasets, with
their settings detailed in Table 1.
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Table 1. Setup of datasets Retina500 and NR206.

Dataset Number Train Validation Test

Retina500 500 400 50 50
NR206 206 126 40 40

4.1.1. Retina500 Dataset

We independently design and develop the Retina500 dataset employing a specially
engineered visible light OCT system. Figure 5 displays the arrangement of the optical setup
used in our experimentation. A broad-spectrum laser output is produced by the SuperK
supercontinuum laser manufactured by NKT Photonics (Birkerød, Denmark). This laser
output is split into visible and near-infrared (NIR) light by a dichroic mirror (DM1) with a
cut-off wavelength set at 650 nm. The visible light is polarized utilizing a polarization beam
splitter (PBS) and subsequently expanded by a pair of prisms. The polarization is optimized
for interference efficiency using polarization controllers (PCs). A specific range within
the visible spectrum is identified using a slit aperture and redirected by a mirror (M). The
NIR light is separated by another dichroic mirror (DM2) at a cut-off wavelength of 900 nm
and filtered to a bandwidth of 800 nm to 875 nm by edge filters. These spectral segments
are then combined using a custom wavelength division multiplexer (WDM) and fed into
an optical fiber coupler (TW670R2A2, Thorlabs, Newton, NJ, USA). In the sample arm,
the beam is collimated with a 6 mm lens (CL), corrected with an achromatizing lens (AL),
controlled by galvanometer mirrors, and focused onto the pupil through a 2:1 telescope,
attaining a 2 mm beam diameter on the cornea. The reference arm consists of collimated
light that is reflected back. Dispersion compensation in the sample arm is accomplished
using BK7 glass plates (DC), and light intensity is regulated using a variable ND filter (ND).
Additionally, dispersion matching can be carried out using a water cuvette. Light from both
arms is combined in the fiber coupler, and then divided into two spectrometers through
another WDM. These spectrometers are equipped with line scanning cameras (spl2048-
140km, Basler, Ahrensburg, Germany) capturing spectral ranges from 535 to 600 nm and
780 to 880 nm, respectively. The spectrometer converts the return beam into an electrical
signal, which is processed by a computer to produce a final OCT image.
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For annotation purposes, we selected the advanced graphics software, Inkscape (ver-
sion number: 1.1.2), under the guidance of our ophthalmology experts, to precisely label the
eight retinal layers: NFL, GCL + IPL, INL, OPL, ONL, ELM + IS, OS, and RPE. Each layer
is distinguished by unique colors, with non-layer areas marked in black as the background.
Before finalizing and exporting each image as a 480 × 400 pixel PNG file, it undergoes
meticulous examination and validation by our professional ophthalmologists to ensure
data accuracy and reliability. Additionally, to facilitate the effective training and evaluation
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of machine learning models, we segment the dataset into a training set with 400 images, a
validation set with 50 images, and a test set with 50 images.

4.1.2. NR206 Dataset

The NR206 dataset is acquired from the Sankara Nethralaya Eye Hospital in Chennai,
India, using a Cirrus HD-OCT machine (Carl Zeiss Meditec, Inc., Dublin, CA, USA) [36].
Each image in the dataset, selected by an experienced clinical optometrist, is centered on
the fovea of the volumetric scan. The OCT machine employs a superluminescent diode as a
light source, emitting at a wavelength of 840 nanometers, and achieves an axial resolution
of 5 microns and a lateral resolution of 15 microns. The dataset is systematically organized
into three subsets: training, validation, and testing, containing 126, 40, and 40 images,
respectively.

4.2. Implementation Details

Our experiments are conducted on a machine equipped with an NVIDIA A100 GPU,
utilizing the PyTorch framework. Considering the memory constraints of the GPU, we
standardize the training batch size across all comparative methods to ensure fairness. We
employ the Adam optimizer coupled with the StepLR learning rate scheduler to dynam-
ically adjust the learning rate throughout the training process. The cross-entropy loss
function is used for model training. To augment the training dataset, we apply various
data augmentation techniques, including horizontal flipping and random image rotation.
The training is set to automatically terminate after 200 epochs, with the selection of the
best-performing model weights from the validation set for further testing. Specifically, each
input image was subjected to horizontal flipping with a probability of 0.5, and to random
rotations with the same probability, where the angle of rotation varied between −10 and
10 degrees. For the Retina500 dataset, the input images are resized to 400 × 480 pixels,
while for the NR206 dataset, the images are cropped to 480 × 400 pixels. An initial learning
rate of 0.002 is set for both datasets.

4.3. Performance Metrics

To consider the class imbalance problem in the dataset, we quantitatively evaluate the
segmentation performance using the Dice score, mIoU, Acc, and mPA. They are computed
using the following formulas:

Dice =
2TP

2TP + FP + FN
(6)

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

mPA =
1

k + 1

k

∑
i=0

TP
TP + TN + FP + FN

(9)

where TP stands for true positive, i.e., the predicted result is consistent with the ground
truth label; TN stands for true negative, i.e., both the predicted result and the ground truth
label are negative; FP stands for false positive, i.e., the predicted result is positive but the
ground truth label is negative; FN stands for false negative, i.e., the predicted result is
negative but the ground truth label is positive; and k stands for the number of categories.
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4.4. Results and Discussion
4.4.1. Experimentation and Analysis on the Retina500 Dataset

In this study, we benchmark our method against several key competitors in the field
of retinal layer segmentation. These include ReLayNet, a well-established method, as
well as OS_MGUNet and EMV_Net, which are recent advancements introduced over the
past two years. Additionally, we compare our approach with DeepLab_v3+, UNETR_2D,
and SegFormer, which are noted for their efficacy in semantic segmentation. Noteworthy
is the fact that both SegFormer and our method utilize a hybrid architecture combining
transformers with CNNs. Despite these architectural similarities, the results in Table 2
show that our method outperforms these established models on the Retina500 dataset.
It achieves the highest mIoU, Acc, and mPA, surpassing the second-ranked method by
margins of 0.39%, 0.61%, and 0.10%, respectively.

Table 2. Quantitative comparison of evaluation indicators of various methods on the Retina500 dataset.

Method mIoU Acc mPA

DeepLab_v3+ [37] 78.28 88.65 96.44
UNETR_2D [38] 78.62 89.49 96.17
ReLayNet [14] 80.14 90.22 96.58
EMV_Net [35] 80.24 89.99 96.65
SegFormer [39] 79.90 89.90 96.56

OS_MGUNet [40] 80.87 90.77 96.67
MT_Net 81.26 91.38 96.77

Table 3 presents a comparison of Dice scores across various layers of the Retina500
dataset. Our method generally outperforms the six aforementioned methods, particularly
in terms of the segmentation accuracy of the NFL, which is critical due to its association
with a higher disease prevalence. Although OS_MGUNet demonstrates a slight advantage
in the ELM and RPE layers, it falls behind our method in the overall metrics—mIoU, Acc,
and mPA—by 0.39%, 0.61%, and 0.10%, respectively. Compared to EMV_Net, which utilizes
a multi-scale feature segmentation approach, our method exhibits superior performance
on most layers. This superiority is likely attributable to the integration of the Transformer
module, which enhances our framework’s effectiveness. In contrast, DeepLab_v3+, despite
its standing as a classic in semantic segmentation, significantly underperforms relative to
our method. This underperformance is partly because DeepLab_v3+’s backbone network
is limited to extracting only two levels of features, primarily from the RPE layer. Fur-
thermore, in comparison with SegFormer, our methodology exhibits consistently superior
segmentation performance.

Table 3. Dice score (%) of the segmentation results on the Retina500 dataset obtained by differ-
ent methods.

Method NFL GCL + IPL INL OPL ONL ELM + IS OS RPE

DeepLab_v3+ [37] 87.87 84.00 88.79 79.19 93.63 90.12 73.50 92.27
UNETR_2D [38] 86.54 92.71 87.50 79.13 93.33 91.62 79.15 92.21
ReLayNet [14] 88.46 94.00 89.54 81.59 93.58 90.46 90.13 92.35
EMV_Net [35] 88.49 93.75 88.92 82.34 94.29 91.56 78.36 92.61
SegFormer [39] 87.72 93.97 90.18 81.65 93.48 89.89 79.27 92.64

OS_MGUNet [40] 87.27 93.65 89.86 82.01 94.03 92.02 81.51 93.38
MT_Net 88.79 94.84 91.43 83.94 94.61 91.89 78.66 91.64

Furthermore, we conduct a statistical analysis of the pixel proportions across each
retinal layer within the entire Retina500 dataset, with the statistical outcomes displayed in
Figure 6. Our findings align with those of He et al. [41], demonstrating that the segmenta-
tion accuracy for specific retinal layers such as GCL + IPL and ONL is significantly higher
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compared to other layers. This discrepancy is attributed to class imbalance within the
dataset. Specifically, in the Retina500 dataset, the average pixel proportions for GCL + IPL
and ONL classes are the highest, accounting for 23.28% and 21.81% of the total retinal layer
pixels, respectively, which is significantly higher than in other classes. This imbalance leads
to model overfitting on these more-frequently occurring classes during training, resulting
in higher segmentation accuracy. Conversely, the classes that appear less frequently in
the dataset do not provide sufficient examples for the model to train with comparable
precision, resulting in lower accuracy for these categories. This underscores the importance
of balancing class distribution in datasets for retinal layer segmentation research in the field
of deep learning.
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retinal layers (excluding background).

In addition to quantitative assessments, our study incorporates a detailed qualitative
analysis, as depicted in Figure 7. Our method exhibits superior segmentation performance,
which is particularly evident in Figure 7i. When comparing our results to other methods,
segmentation errors typically fall into two main categories: intra-class and inter-class
errors. Intra-class errors, which pertain primarily to misclassifications within the same
class, including the background, are marked by white dashed lines in Figure 7d,f,g. These
errors are typically due to similarities in texture or color within the same class, leading to
segmentation challenges. Inter-class errors, depicted by red dashed lines in Figure 7c–h,
occur when the boundaries between different classes are inaccurately identified. In contrast,
Figure 7i shows that our proposed method achieves accurate, continuous, and complete
segmentation across each layer without interruptions, yielding superior results. These
visual comparisons further substantiate the effectiveness of our segmentation approach.

Noise and artifacts in OCT images are caused by various factors, among which motion
artifacts are notably significant. These artifacts typically result from movements of the
patient’s eye or head and are manifested as thin vertical white or black lines on the retinal
layer images. This phenomenon is exemplified in the area highlighted by the red arrow
in Figure 8a. As shown in Figure 8d–h, compared to our method, other methods display
various degrees of intra-class errors in the presence of artifacts. Although there are no
evident intra-class errors in Figure 8c, artifacts still lead to varying extents of under-
segmentation in the GLC + IPL, INL, and OPL, which severely impacts the accuracy
of disease diagnosis. Our method remains unaffected by noise and artifacts, achieving
precise segmentation.
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Figure 7. Predicted maps of retinal layer segmentation for randomized test images from the Retina500
dataset. Panel (a) displays the original image, and panel (b) shows the ground truth. The prediction
maps are generated via various segmentation methods: DeepLab_v3+ in panel (c), UNETR_2D in
panel (d), ReLayNet in panel (e), EMV_Net in panel (f), SegFormer in panel (g), OS_MGUNet in
panel (h), and our proposed method in panel (i). Each panel demonstrates the effectiveness of the
respective methods in segmenting the complex structures of the retinal layers.
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Figure 8. Segmentation effects of the model under the influence of noise and artifacts. Panel
(a) displays the original image, and panel (b) shows the ground truth. The prediction maps are
generated via various segmentation methods: DeepLab_v3+ in panel (c), UNETR_2D in panel (d),
ReLayNet in panel (e), EMV_Net in panel (f), SegFormer in panel (g), OS_MGUNet in panel (h),
and our proposed method in panel (i). Each panel demonstrates the effectiveness of the respective
methods in segmenting the complex structures of the retinal layers.
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4.4.2. Experiments and Analysis on the NR206 Dataset

To further substantiate the effectiveness of our approach, we extended our compar-
isons to include experiments on the third-party public dataset, NR206. Table 4 presents a
quantitative comparison of our method against other established methods, where our ap-
proach demonstrates superior performance. Specifically, it outperforms the second-ranked
method by 0.51% in mIoU and by 0.03% in mPA.

Table 4. Quantitative comparison of evaluation indicators of various methods on the NR206 dataset.

Method mIoU Acc mPA

DeepLab_v3+ [37] 83.89 91.38 98.62
UNETR_2D [38] 83.07 90.29 98.50
ReLayNet [14] 83.95 90.80 98.64
EMV_Net [35] 83.59 91.25 98.56
SegFormer [39] 83.76 90.98 98.60

OS_MGUNet [40] 83.58 90.91 98.58
MT_Net 84.46 91.24 98.67

Additionally, Table 5 presents the Dice score performance of various methods across
different layers of the NR206 dataset. The results indicate that our methods achieve the
highest Dice scores in most of the layers, notably excelling in the segmentation accuracy
of the NFL, where they outperform the second-best method by 0.22%. This enhancement
underscores the improved capability of our method in capturing and processing complex
patterns more efficiently than traditional models.

Table 5. Dice score (%) of the segmentation results on the NR206 dataset obtained by different methods.

Method NFL GCL + IPL INL OPL ONL ELM + IS OS RPE

DeepLab_v3+ [37] 87.03 96.20 90.43 81.47 95.76 93.11 87.73 96.40
UNETR_2D [38] 87.05 95.60 88.82 79.37 95.42 93.00 88.29 96.37
ReLayNet [14] 87.82 96.33 90.57 80.31 95.78 93.35 87.61 96.44
EMV_Net [35] 86.98 96.09 90.31 81.38 95.81 92.85 87.45 95.85
SegFormer [39] 87.03 96.21 90.44 81.48 95.80 92.89 87.48 96.16

OS_MGUNet [40] 86.62 96.01 89.76 81.29 95.70 93.18 87.57 96.40
MT_Net 88.04 96.33 90.65 80.81 95.84 93.57 88.80 96.69

We also analyze the average pixel proportions within the NR206 dataset, with the
statistical outcomes displayed in Figure 9. Specific retinal layers such as GCL + IPL and
ONL consistently show higher segmentation accuracies compared to other layers. Notably,
GCL + IPL and ONL account for 22.89% and 21.77% of the total retinal layer pixels,
respectively, significantly exceeding other layers. Layers with lower pixel proportions also
exhibit lower accuracies. These results further confirm that differences in accuracy primarily
stem from class imbalance in the dataset. Therefore, to enhance overall segmentation
precision, it is necessary to implement specific measures to address the recognition and
segmentation challenges of different categories.

Figure 10 displays a qualitative assessment of our method using the NR206 dataset. As
previously mentioned, segmentation errors are divided into intra-class errors, represented
by white dashed lines as shown in Figure 10d, and inter-class errors, indicated by red
dashed lines in Figure 10c,e–h. When comparing our results with other methods, it is
evident that other approaches exhibit noticeable intra-class and inter-class errors, whereas
our method, as illustrated in Figure 10i, shows neither type of error. This demonstrates
that our approach achieves the accurate, continuous, and complete segmentation of each
retinal layer. These visual comparisons further validate the effectiveness and precision of
our segmentation method.
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hances its capacity to capture details, enabling the model to more accurately distinguish 
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Figure 10. Predicted maps of retinal layer segmentation for randomized test images from the NR206
dataset. Panel (a) displays the original image, while panel (b) shows the ground truth. The subsequent
panels illustrate the prediction maps generated by various segmentation methods: DeepLab_v3+
in panel (c), UNETR_2D in panel (d), ReLayNet in panel (e), EMV_Net in panel (f), SegFormer in
panel (g), OS_MGUNet in panel (h), and our method in panel (i). Additionally, each panel includes
a zoomed-in view to highlight the local details of the predictions, providing a closer look at the
segmentation accuracy of each method.

4.4.3. Inference Time Statistics

In Table 6, we present the inference times recorded for each method when applied to
the Retina500 dataset. While our approach exhibits superior segmentation accuracy, it also
incurs a slightly longer inference time compared to other methods. This observation under-
scores the need for optimization in future developments, aiming to balance computational
efficiency with performance accuracy.
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Table 6. Inference time (s) statistics for various methods.

Method Inference Time

DeepLab_v3+ [37] 1.87
UNETR_2D [38] 1.50
ReLayNet [14] 0.80
EMV_Net [35] 2.18
SegFormer [39] 1.16

OS_MGUNet [40] 1.36
MT_Net 3.16

4.5. Ablation Study without Transformer

Our ablation study conducted on the Retina500 dataset evaluates the effectiveness of
the Transformer module within our framework. In particular, Figure 11c,d demonstrate
that the inclusion of the Transformer module significantly enhances the model’s capability
in segmenting different categories, effectively reducing intra-class and inter-class errors.
This improvement not only strengthens the model’s generalization ability but also enhances
its capacity to capture details, enabling the model to more accurately distinguish between
closely related or similar categories.

Photonics 2024, 11, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 11. Ablation experiments performed on the Retina500 dataset, where (a) is the original image, 
(b) is the ground-truth, (c) is the prediction map without the Transformer module in our method, 
and (d) is the prediction map with the Transformer module in our method. 

The results presented in Table 7 demonstrate that the implementation of the Trans-
former module significantly enhances the performance of the model. Specifically, follow-
ing the incorporation of this module, the Dice score shows an average increase of 2.16%, 
while the mIoU, Acc, and mPA improve by 3.61%, 0.30%, and 1.90%, respectively. These 
improvements highlight the capability of the Transformer module to boost segmentation 
performance by effectively extracting global features. This aggregation of global infor-
mation not only improves the model’s performance in handling local details but also en-
hances its accuracy in terms of its overall structure. 

Table 7. Comparison of quantitative analysis on the Retina500 dataset through Transformer ablation 
experiments performed in our framework. 

Method Average_Dice mIoU Acc mPA 
No Transformer 89.41 80.85 90.94 96.77 

MT_Net 91.57 84.46 91.24 98.67 

5. Conclusions 
In this study, we have developed an advanced technique for the segmentation of ret-

inal layers, specifically designed to tackle the challenges posed by noise and artifacts in 
OCT images, which hinder precise layer segmentation. Our innovative method utilizes a 
multi-scale framework that leverages the strengths of the ConvNeXt backbone network 
along with the dynamic capabilities of the Transformer module, significantly enhancing 
the segmentation of retinal images. The ConvNeXt architecture ensures consistent and 
efficient feature extraction from retinal images, while the inclusion of the Transformer 
module employs its global attention mechanism to manage complex information across 
the images more effectively. The strategic architecture of our model’s multi-scale structure 
allows it to adapt to the varying scales of retinal layers, thereby enhancing both the accu-
racy and robustness of segmentation. Rigorous evaluations conducted on the Retina500 
and NR206 datasets have shown the superior performance of our method, achieving 
benchmark metrics of mIoU, Acc, and mPA at 81.26%, 91.38%, and 96.77%, respectively, 
on the Retina500 dataset. These results not only confirm the effectiveness of our approach 
in segmenting fundus images but also underscore its significant potential for advancing 
the early diagnosis of fundus diseases. 

In future work, our model will be rigorously tested across a broader spectrum of dis-
ease datasets to further substantiate its performance. Additionally, to bolster the model’s 
ability to generalize across different clinical scenarios, we will evaluate it with images ob-
tained from various diagnostic devices. Efforts will also be made to refine the model for 
lightweight deployment, with the dual objectives of enhancing diagnostic accuracy and 
reducing the incidence of false positives in medical imaging. 

Author Contributions: Conceptualization, E.L. and X.H.; methodology, E.L.; software, J.Y.; valida-
tion, L.Z., A.W. and J.L.; formal analysis, E.L. and S.Y.; resources, W.S.; data curation, E.L. and Y.G.; 

Figure 11. Ablation experiments performed on the Retina500 dataset, where (a) is the original image,
(b) is the ground-truth, (c) is the prediction map without the Transformer module in our method, and
(d) is the prediction map with the Transformer module in our method.

The results presented in Table 7 demonstrate that the implementation of the Trans-
former module significantly enhances the performance of the model. Specifically, following
the incorporation of this module, the Dice score shows an average increase of 2.16%, while
the mIoU, Acc, and mPA improve by 3.61%, 0.30%, and 1.90%, respectively. These im-
provements highlight the capability of the Transformer module to boost segmentation
performance by effectively extracting global features. This aggregation of global informa-
tion not only improves the model’s performance in handling local details but also enhances
its accuracy in terms of its overall structure.

Table 7. Comparison of quantitative analysis on the Retina500 dataset through Transformer ablation
experiments performed in our framework.

Method Average_Dice mIoU Acc mPA

No Transformer 89.41 80.85 90.94 96.77
MT_Net 91.57 84.46 91.24 98.67

5. Conclusions

In this study, we have developed an advanced technique for the segmentation of
retinal layers, specifically designed to tackle the challenges posed by noise and artifacts in
OCT images, which hinder precise layer segmentation. Our innovative method utilizes a
multi-scale framework that leverages the strengths of the ConvNeXt backbone network
along with the dynamic capabilities of the Transformer module, significantly enhancing the
segmentation of retinal images. The ConvNeXt architecture ensures consistent and efficient
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feature extraction from retinal images, while the inclusion of the Transformer module
employs its global attention mechanism to manage complex information across the images
more effectively. The strategic architecture of our model’s multi-scale structure allows it
to adapt to the varying scales of retinal layers, thereby enhancing both the accuracy and
robustness of segmentation. Rigorous evaluations conducted on the Retina500 and NR206
datasets have shown the superior performance of our method, achieving benchmark metrics
of mIoU, Acc, and mPA at 81.26%, 91.38%, and 96.77%, respectively, on the Retina500
dataset. These results not only confirm the effectiveness of our approach in segmenting
fundus images but also underscore its significant potential for advancing the early diagnosis
of fundus diseases.

In future work, our model will be rigorously tested across a broader spectrum of
disease datasets to further substantiate its performance. Additionally, to bolster the model’s
ability to generalize across different clinical scenarios, we will evaluate it with images
obtained from various diagnostic devices. Efforts will also be made to refine the model for
lightweight deployment, with the dual objectives of enhancing diagnostic accuracy and
reducing the incidence of false positives in medical imaging.
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