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Fusing multispectral information for
retinal layer segmentation
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Extensive research on retinal layer segmentation (RLS) using deep learning (DL) ismostly approaching
a performance plateau, primarily due to reliance on structural information alone. To address the
present situation, we conduct the first study on the impact of multi-spectral information (MSI) on RLS.
Our experimental results show that incorporating MSI significantly improves segmentation accuracy
for retinal layer optical coherence tomography (OCT) images. Furthermore, we investigate the primary
factors influencing MSI, including the number of multi-spectral images, spectral bandwidth, and the
different spectral combinations, to assess their impacts on the accuracy of RLS. Building upon this
foundation, we have incorporated MSI into RLS methods, yielding exceptional performance in
segmentation outcomes, and these findings have been validated inOCT images across both the near-
infrared and visible-light spectral ranges. Fusing MSI provides a novel approach to improving RLS
accuracy, further demonstrating the importance of open-source MSI information in OCT devices.

The eye is often referred to as the window to the soul, with over 80% of
external information perceived by humans through vision, making ocular
health critically important to human life.With the continuous advancement
of social science and technology, excessive eye use due to various factors has
led to a rising prevalence of eye diseases1. This situation is further exacer-
bated by the intensification of population aging.Among these eye diseases, a
largenumber of patients exhibit changes in retinal structure at an early stage,
such as changes in retinal layer thickness2–4. Accurate detection of retinal
layer changes in the early stages of high-blindness-risk fundusdiseases could
potentially prevent or even reverse the progression of these diseases.

OCT is a non-invasive imaging technique used for the cross-sectional
visualization of retinal layers. Since its invention in 1990, it has become the
gold standard for diagnosing various ophthalmic diseases5. Changes in
retinal layer thickness often accompany many early-stage ophthalmic dis-
eases, and OCT provides a critical means for accurately quantifying these
changes6. Domestically and internationally researchers have conducted
extensive studies on RLS based on OCT images. In recent years, DL-based
RLS research has gained increasing attention7–9. Compared to machine
learning, DL can adaptively extract features across different dimensions,
significantly reducing development difficulty10,11. Since the proposal of the
ReLayNet12model in 2017,DL-basedRLS researchhas primarily focused on
optimizingmodel structures and improving training strategies. However, in
recent years, the overall improvement in RLS accuracy has been dimin-
ishing, and the performance of DL methods based on model structure
optimization and training strategy improvement has reached its limits. We

analyze that the research based on OCT images relies solely on structural
information, while the spectral information is lost, which brings dis-
advantages at the data source. The principle of measuring blood oxygen
saturation reveals that different wavelengths of light have varying sensitiv-
ities to blood oxygen saturation13,14, which is somewhat similar to the
principle ofmulti-spectral fundus cameras15. The imaging principle ofOCT
in retinal layers utilizes the differences in cellular structures and elemental
compositions of different retinal layers, resulting in varying backscattering
rates of the same wavelength of light when it strikes different layers. Con-
sequently, when different wavelengths of light are directed at the same
retinal tissue, they also yield diverse backscattering rates. Based on this
foundation, we posit that by employing OCT devices with multiple wave-
length range sources for scanning retinal layers, the acquired retinal images
will provide structural information and capture additional MSI. The effec-
tive utilization of this spectral information could potentially transcend the
limitations imposed by relying solely on retinal structural information for
segmentation, propelling DL-based research on retinal layer segmentation
to a new level. However, current OCT equipment does not provide MSI,
primarily for two reasons: from the perspective of OCT image-based
researchers, they are unaware that the rawdata collected byOCTequipment
also contains rich spectral information, so they can only conduct research
based on structural information in the images; From the perspective ofOCT
equipment manufacturers, they are not aware of the importance of multi-
spectral information for medical imaging research, therefore, OCT equip-
ment does not have open-source multi-spectral information.
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To address the aforementioned issues, in this context, we aim to
investigate whether MSI can enhance RLS. Assuming that MSI has been
proven to improve the accuracy of RLS, wewill further explore the impact of
primary factors influencing MSI on RLS accuracy. Ultimately, the MSI will
be applied to general RLS approaches, making it a simpler and more uni-
versal technique for enhancing RLS accuracy. This initiative not only calls
for the OCT equipment manufacturing industry to open-source MSI but
also serves as a reminder for researchers who base their work on OCT
images to utilize more raw materials for processing.

In this work, our contributions are summary as follows:
1. We propose a framework to explain how to extract MSI information

and how to apply it to general RLSmethods, As demonstrated in Fig. 1.
2. We discover the enhancing effect ofMSI onRLS accuracy. Specifically,

first, compared to traditional single spectral images, usingMSI images
can improve the accuracy of RLS; second, we discover three main
factors that may have an impact on MSI, including the spectral
bandwidth, the number of multi-spectral images, and the multi-
spectral combination. And further explore the mechanisms of these
three factors in different spectral ranges.

3. We find that applying MSI to general RLS methods has similar
improved accuracy performance in different spectral ranges, demon-
strating the universality of MSI.

4. Our research indicates that OCT manufacturers have neglected a
crucial factor in imaging: MSI. This will prompt the entire OCT
manufacturing industry to reconsider and make corresponding pro-
duct enhancements without altering existing equipment.

Results
Does the MSI can improve the accuracy of RLS ?
To ascertain whether MSI can improve the accuracy of RLS, we initially
test four commonly used RLS methods on a multi-spectral OCT image
dataset with equal-bandwidth spectrum and different central wave-
lengths of NO.1, NO.2, and NO.3, and conduct quantitative analysis. In
Fig. 2a–d, under the combination of multiple-spectral, the accuracy of
multiple-spectral is higher than that of single-spectral across all three
segmentationmetrics. In Fig. 2a, withinmultiple-spectral combinations,
the segmentation accuracy of the Enet16method is higher than that of the
single-spectral approach. In the (No.1&2) VS (No.1) group, addingNo.2
to the No.1 spectral band increased the mIoU index by 0.62 percentage
points. Adding images in the No.1 and No.2 spectral bands to the
No.3 spectral band also improved the segmentation accuracy of Enet to
varying degrees, with the mIoU index increasing by 0.43 and 0.47 per-
centage points, respectively. In Fig. 2b, c, the groups with the highest
accuracy improvement is (No.1&2) VS (No.1), which has improved the
mIoU index by 0.91 and 1.40 percentage points. In Fig. 2d, after adding
images in the 2nd and 3rd spectral band to the No.1, the segmentation
accuracy of AttU_net17 increased by 0.74 and 0.77 percentage points
respectively on the mIoU index, with similar trends of improvement
observed in the Dice and mPA indices as well.

In addition to quantitative indicators, we also conduct qualitative
analysis. In Fig. 3a–d, we can see that there is a certain degree of intra-class
error in the predictionmaps of eachmethodonmost single-spectral images,
such as the red dashed area in the predictionmap of ReLayNet12 on No.1 in
Fig. 3b, the red dashed area in the predictionmap of AttU_net on No.2 and
No.3 in Fig. 3c, and the red dashed area in the prediction map of
TransUnet18 on No.1 in Fig. 3d. In addition, the addition of MSI has also
reduced some issues of inaccurate inter-class boundaries, such as the dashed
area in the predicted maps of Enet on No.1 and No.3 in Fig. 3a, the red
dashed area in the predicted maps of ReLayNet on No.3 in Fig. 3b, and the
red dashed area in the predicted maps of TransUnet on No.3 in Fig. 3d. In
addition, we also use error distribution plots of prediction and annotation to
further analyze the improvement of multi-spectral over single-spectrum. In
Fig. 3e–h, the deeper the degree, the larger the error area between prediction
and annotation, and the pure color background area represents complete
consistency between prediction and annotation.We can clearly see from the

local zoom-in regions in Fig. 3e–h that the area of error in themulti-spectral
group is generally significantly reduced.

Our study demonstrates that within spectral images of equal band-
width but different central wavelengths, any combination of images with
distinct central wavelengths enhances the segmentation accuracy compared
to any single spectral image within that combination. This aligns with our
previous hypothesis that light of different wavelengths incident on the same
retinal layer tissue also produces varying backscattering rates, which can be
further utilized to obtainMSI. ThisMSI effectively improves the traditional
RLS accuracy based on single-spectral images.

Exploring the primary factors affecting MSI in visible-light multi-
spectral (VMS) dataset
After verifying the effect of MSI on RLS, we conduct further investigations
into the factors that may affect MSI, including the number of spectrum,
spectral bandwidth (range of the spectrum), and spectral combinations.
Figure 4a, the changes in RLS accuracy are demonstratedwhen sequentially
adding spectral images of different central wavelengths to the raw image, by
the Deformer19 method. When the No.7 spectral image is added, the seg-
mentation accuracy improved from 85.43 to 85.82, with an increase of 0.39
on the mIoU index. On this basis, further addition of spectrum No.5 and
No.6 improved the segmentation accuracy by 0.55 compared to single-
spectrum. Continuing to add No.3 and No.4 spectral images sequentially,
and then No.1 and No.2 spectral images, the segmentation accuracy
increased by 0.54 and 0.55 respectively compared to single-spectrum.

Figure 4b shows the impact ofMSI onRLS after adding spectral images
with different bandwidths.Among them, there are a total of 7 spectrumwith
different center wavelengths in the image that is 0.05 times the raw spec-
trum. Three segmented spectrum with different center wavelengths can be
selectedand added to the raw spectrum, as shown inFig. 4c. There are a total
of 35 combinations, and taking the average of themcanobtain anMSIwith a
spectral bandwidth of 0.05 times, which can improve the segmentation
accuracy ofRLS to 85.67. Similarly, addingMSIwith a spectral bandwidthof
0.1 times, 0.15 times, 0.2 times, and 0.25 times can respectively improve the
segmentation accuracy of RLS to 85.87, 85.98, 85.87, and 85.82. Among
them, MSI with a spectral bandwidth of 0.15 times has the greatest
improvement effect in this experiment.

Based on the premise that the MSI with a 0.15 times bandwidth pro-
vides the most significant enhancement in RLS segmentation accuracy, Fig.
4c illustrates all combinations of the MSI with a 0.15 times bandwidth
image. The average improvement in accuracy across all combinations is
0.55. Specifically, when the MSI of combinations No.1&4&7, No.1&3&6,
and No.3&4&5 are added, the accuracy improves by 0.72, 0.71, and 0.70
respectively. The combination with the least enhancement is No.1&5&7,
which results in an accuracy improvement of 0.11.

Exploring the primary factors affecting MSI in near-infrared
multi-spectral (NIMS) dataset
To verify the universality of the above experimental results, we conduct the
same experiment on spectral images in the near-infrared band range.
Figure 5a illustrates the changes in RLS accuracy when sequentially adding
spectral imageswithdifferent centralwavelengths to the raw imageusing the
Deformer method. When the No.7 spectral image is added, the segmenta-
tion accuracy improved from84.18 to 84.77, representing an increase of 0.59
in the mIoU metric. Building on this, further addition of the No.5 and
No.6 spectral images enhanced the segmentation accuracy by 0.89 com-
pared to a single spectrum. Subsequently, continuing to add the No.3 and
No.4 spectral images, followed by the No.1 and No.2 spectral images, the
segmentation accuracy improved by 1.02 and 0.94 respectively, relative to a
single-spectrum. Figure 5b shows the effect of MSI on RLS after adding
spectral images with different bandwidths. In the 0.025 times spectral
bandwidth image, the average segmentation accuracy of all spectral com-
binations shows thatMSI can improve the segmentation accuracy of RLS to
84.90. Similarly, adding MSI with a spectral bandwidth of 0.05 times, 0.1
times, and 0.2 times can respectively improve the segmentation accuracy of
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RLS to 84.95, 84.87, and84.68.Among them,MSIwith a spectral bandwidth
of 0.05 times has the greatest improvement effect in this experiment. Figure
5c shows all combinations of MSI with a spectral bandwidth of 0.05 times,
with an average improvement accuracy of 0.77 for all combinations. When
adding MSI with No.3&5&7, No.1&2&4, and No.2&4&7, the accuracy is
improved by 1.14, 1, and 1, respectively. The combination with the least
improvement is No.2&3&6, with an improvement of 0.39 in accuracy.

Application of MSI to general RLS methods
After exploring the primary factors that MSI affects the accuracy
improvement of RLS, we attempt to apply it to general RLS methods. To
prove its universality, we still conduct experiments on both NIVS dataset
and VMS dataset simultaneously. We select the most classic ReLayNet12

method in the RLS field, as well as the latest EMV-Net20 and LightReSeg21

methods for the experiment, and we also add Segformer22 and AttUnet17,

Fig. 1 | The principle demonstration and practical application ofMSI. a shows how to obtainmulti-spectral images from the raw spectrum, b shows the acquisition ofMSI
in three different sub-band spectral images, c shows the application of MSI to the general RLS method framework.

https://doi.org/10.1038/s41746-025-01446-z Article

npj Digital Medicine |            (2025) 8:39 3

www.nature.com/npjdigitalmed


two segmentation methods with excellent performance. As shown in
Table 1, we add a combination of spectral images with a bandwidth of 0.05
times No.3&5&7 to the NIMS dataset and apply them to the selected three
methods using spectral extractionmodules. Among them, mIoU improved
by 0.54, 1.00, 0.91, 0.60, and 1.15 on ReLayNet, EMV-Net, Segformer,
LightReSeg and AttUnet, respectively. Similarly, a combination of
No.1&4&7with a bandwidth of 0.15 times spectral images, are added to the
VMS dataset and applied to the selected three methods by a spectral
extraction module. The mIoU metric is enhanced by 0.45, 0.61, 0.68, 0.73,
and 0.71 on ReLayNet, EMV-Net, Segformer, LightReSeg and AttUnet,
respectively. In addition, the addition of MSI has also improved the seg-
mentation accuracy of each layer of the retina.

In addition, we further perform the statistical significance test by using
theWilcoxon rank sum test. For example, when comparing the differences
on the NIMS dataset, we observe a P value of 0.0176 (p < 0.05) on the
ReLayNet, indicating a statistically significant difference after adding the
application of MSI. Similar statistically significant differences are observed,
with P values of 0.01562 (p < 0.05), 0.00781 (p < 0.05), 0.01562 (p < 0.05),
and 0.03906 (p < 0.05) respectively when comparing on the EMV-Net,
AttUnet, SegFormer-B0 and LightReSeg. In the context of the VMS dataset,
the P values obtained for eachmethod are as follows: ReLayNet exhibits a P
valueof 0.01775 (p < 0.05),while all othermethodsdemonstrate auniformly
lower P value of 0.00781 (p < 0.05). These results statistically signify that

following the application of MSI, every method indicates a significant
enhancement in performance.

We observe that MSI has an enhancing effect on both the classic
ReLayNet method and the latest LightReSeg method. Moreover, this con-
clusion is validated in datasets across both visible light and near-infrared
spectral ranges, demonstrating the universalityof theMSI approach.Table 1
shows that the ReLayNet method based on the raw spectrum generally
under-performed LightReSeg in terms of the mIoU metric. Although
accuracy improved after incorporatingMSI, it did not reach the precision of
LightReSeg using just a single spectrum.This indicates thatMSI is a versatile
and universally applicable method for improving accuracy, but it cannot
compensate for the structural deficiencies in general RLS methods. Fur-
thermore, the Table 1 reveals that relying solely on MSI falls short of sur-
passing segmentation outcomes based on Raw images (structural
information) in this experiment. This underscores the potential for further
enhancement in extracting and utilizing spectral information, which cur-
rently serves merely as a supplement to structural data.

We further conduct qualitative analysis on theNIMSdataset, as shown
in Fig. 6. In Fig. 6a–c, we can clearly see that onmost single-spectral images,
the fusion ofMSI significantly reduces intra-class and inter-class errors. The
prediction graphs of ReLayNet before and after addingMSI in the first row
of Fig. 6a, and the prediction graphs of EMV-Net before and after adding
MSI in the first and second rows of Fig. 6b all significantly reduce intra-class

Fig. 2 | Quantitative description of the improvement in RLS accuracy of multi-
spectral images compared to single spectral images. a–d show the accuracy
comparison of four methods, Enet, ReLayNet, TransUnet, and AttU_net, under
different spectral combinations. No.1, No.2, and No.3 in the horizontal axis repre-
sent the retinal layer images of the No.1 wavelength range (center wavelength

542 nm), the No.2 wavelength range (center wavelength 584 nm), and the No.3
wavelength range (center wavelength 627 nm), respectively, with a spectral band-
width of 63 nm. No.1& 2, No.2& 3, and No.1& 3 represent the composite of the first
and second spectral images, the composite of the second and third spectral images,
and the composite of the first and third spectral images, respectively.
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errors. As shown in the prediction graphs of ReLayNet before and after
addingMSI in the second and third rows of Fig. 6a, the prediction graphs of
EMV-Net before and after adding MSI in the third row of Fig. 6b, and the
prediction graphs of LightReSeg before and after adding MSI in Fig. 6c, all
significantly reduce inter-class boundary errors. It is clear from the locally
magnified areas in Fig. 6d–f that the error area of the prediction map with
MSI added is usually significantly reduced.

We also conduct qualitative analysis on the VMS dataset, as shown in
Fig. 7. In Fig. 7a–c, we can clearly see that onmost single spectral images, the
fusion of MSI significantly reduces intra-class and inter-class errors. The
prediction graphs ofReLayNet before andafter addingMSI inFig. 7a, EMV-
Net before and after adding MSI in the second row of Fig. 7b, and Light-
ReSeg before and after adding MSI in the second row of Fig. 7c all

significantly reduce intra-class errors.As shown in thefirst and third rowsof
Fig. 7b, the predicted EMV-Net before and after adding MSI, and the pre-
dicted LightReSeg before and after addingMSI in the first and third rows of
Fig. 7c, all significantly reduce inter-class boundary errors. It is clear from
the locally magnified areas in Fig. 7d–f that the error area of the prediction
map with MSI added is usually significantly reduced.

In addition, the introduction of this MSI encoder specifically designed
for extractingMSI image features does indeed increase the number ofmodel
parameters. We conduct ablation experiments on the encoder using the
LightReSeg method on the NIMS dataset. We find that if the LightReSeg
method is not changed and only raw images are input, the mIoU index is
82.31; If the MSI encoder is added to the LightReSeg model and the raw
image is simultaneously input into the MSI encoder, it will result in a

Fig. 3 | Qualitative description of multi-spectral methods for RLS. a–d shows a
comparison of predictions based on four methods, Enet, ReLayNet, TransUnet, and
AttU_net, under different spectral combinations. The red dashed boxes in thefigures
provide annotations for obvious intra-class errors or inter-class ambiguities.

e–h shows the absolute error distribution between the predicted and GT of four
methods, Enet, ReLayNet, TransUnet, and AttU_net, and some regions are anno-
tated using local zoom-in images.
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decrease in the accuracy of retinal layer segmentation, with amIoUof 81.67;
If theMSI image is input into theMSI encoder, the segmentation accuracy is
significantly improved, with a mIoU index of 82.91. Therefore, the MSI
encoder used in this method has specificity for MSI images, and only per-
forms better in feature extraction of MSI images.

Discussion
Since the emergence of the ReLayNet12 method in 2017, research on RLS
based on DL has shown a rapid growth trend. However, most studies have
focused primarily on improvements tomodel architecture or optimizations

of training strategies, leading to a fixed mindset in DL-based RLS that
struggles to break through from other perspectives to further enhance the
limitations of segmentation accuracy. Moreover, DL-based RLS methods
often only demonstrate good segmentationperformance in one type of data,
and their universality is often unsatisfactory across a broader range of data.
To address these issues, we propose an RLS method study based on MSI,
verifying whether MSI has the capability to enhance RLS, exploring the
main influencing factors of MSI, including bandwidth, quantity, and
combinations, and applying it across general RLS methods and multiple
spectral ranges of data.

Fig. 4 | The primary factors of MSI on improving RLS accuracy in the VMS
dataset. a explores the sequential addition of different numbers of visible-light
spectral images to the raw-spectral image. Raw on the horizontal axis represents the
raw spectral image (centerwavelength 585 nm, spectral bandwidth of 127 nm), while
& No.7, & No.5-7, & No.3-7, & No.1-7 represent the addition of the 7th, 5th to 7th,
3rd to 7th, and 1st to 7th spectral images to the raw spectral image, respectively, with
a spectral bandwidth of 19 nm. No.1 (center wavelength 532 nm), No.2 (center

wavelength 542 nm), No.3 (center wavelength 560 nm), No.4 (center wavelength
574 nm), No.5 (center wavelength 596nm), No.6 (center wavelength 610nm), No.7
(center wavelength 635 nm). b explores the sequential addition of visible-light
spectral images with different bandwidths to the raw-image, with the abscissa
representing multiples of the spectral bandwidth of the raw-image. c explores the
sequential addition of different combinations of visible-light spectral images on the
raw-image.
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In exploring the primary factors influencing the effectiveness ofMSI in
the NIMS dataset and VMS dataset, we identified several commonalities:
Firstly, as the number of spectral images increases, the trend of MSI’s
enhancement onRLSaccuracy initially grows and thenstabilizes. It is easy to
understand from the perspective of information theory because the amount
of input information has increased. Secondly, within a certain range of
spectral bandwidths, there exists an optimal bandwidth range where MSI
has themaximumeffect onRLS. Lastly, among differentMSI combinations,
their impact on RLS accuracy varies. Besides these commonalities, we also
observed differences between the two datasets. For instance, in Fig. 4a, the

trend of MSI’s enhancement on RLS accuracy eventually stabilizes with the
increase in the number of spectral images, whereas in Fig. 5a, it ultimately
declines.We attribute this phenomenon to twomain reasons: Firstly, as the
number of spectral images increases, theweight of key spectral images in the
DL model is diluted, leading to a reduced ability to extract effective MSI
features. Secondly, with the addition of spectral images, the differences
between multi-spectral images are diminished, which prevents the DL
model from effectively utilizing MSI despite the increased input of spectral
images. RegardingMSI combinations, the trends of enhancement also differ
between the two spectral ranges. For example, in VMS dataset, the

Fig. 5 | The primary factors of MSI on the improvement of RLS accuracy in the
NIMS dataset. a explores the sequential addition of different numbers of near-
infrared spectral images to the raw-spectral image. Raw on the horizontal axis
represents the raw spectral image (center wavelength 844 nm, spectral bandwidth of
173 nm), while & No.7, & No.5-7, & No.3-7, & No.1-7 represent the addition of the
7th, 5th to 7th, 3rd to 7th, and 1st to 7th spectral images to the raw spectral image,
respectively, with a spectral bandwidth of 8.6 nm. No.1 (center wavelength 778 nm),

No.2 (center wavelength 800 nm), No.3 (center wavelength 821 nm), No.4 (center
wavelength 843 nm), No.5 (center wavelength 865 nm), No.6 (center wavelength
886 nm), andNo.7 (centerwavelength 908 nm).b explores the sequential addition of
near-infrared spectral images with different bandwidths to the raw-image, with the
abscissa representing multiples of the spectral bandwidth of the raw-image.
c explores the sequential addition of different combinations of near-infrared spectral
images on the raw-image.
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combinations with the maximum and minimum enhancement are
No.1&4&7 and No.1&6&7, respectively, while in NIMS dataset, they are
No.3&5&7 and No.2&3&6. The magnitude of RLS accuracy improvement
also varies significantly between the two datasets. We analyze that this
phenomenon is primarily due to the different backscattering rates and
penetration capabilities of light at different wavelengths in the same tissue
or cells.

For researchers in RLS, the advent of MSI offers a direct and
significant benefit. Historically, these researchers have invested con-
siderable effort in developing methodologies to conduct RLS research
based on structural information in images, progressing from simple
thresholding techniques to sophisticated mathematical modeling
approaches23–26. They have also transitioned from machine learning
algorithms that required manual feature extraction to deep learning

models capable of autonomous feature extraction27–29. Despite these
advancements, they have consistently sought to incorporate novel
methods while preserving the insights of their predecessors, all in the
pursuit of enhancing the accuracy of RLS. However, until now, they
have not considered the possibility of unreasonable “compression” in
dataset data or the potential neglect of certain information. The
introduction of MSI has introduced a qualitative shift in the field of
RLS segmentation. This innovative approach is poised to equip
researchers with new tools for achieving higher precision in RLS.
Consequently, this will significantly improve the diagnostic accuracy
of various early-stage diseases that rely on RLS segmentation out-
comes. As a result, certain retinal disorders, which have high
blindness rates if left untreated in their initial stages, can now be
effectively managed and suppressed right from their onset.

Fig. 6 | Apply MSI to general RLS methods on NIMS dataset. a–c show a com-
parison of predictions before and after adding MSI on three methods, ReLayNet,
EMV_Net, LightReSeg. The red dashed boxes in the figures provide annotations for

obvious intra-class errors or inter-class ambiguities. d–f shows the absolute error
distribution between the predicted and true values of three methods, ReLayNet,
EMV_Net, LightReSeg, with some regions annotated using local zoom-in images.
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For researchers based on OCT images, this is also a stunning
discovery. This is because it is highly probable that new dimensions
of variables will be introduced into their research, including retinal
layer segmentation, fundus vascular segmentation30, lesion detection31

and classification32 based on OCT images, and so on. In most cases,
the increased volume of information is bound to contain certain
factors beneficial to the task, and achieving high accuracy and
reliability is the ultimate goal for medical image researchers. There-
fore, researchers based on OCT images should also consider incor-
porating MSI into their next research steps. This is like 3D OCT scan
data having one more depth information than 2D photos taken by
fundus cameras.

For manufacturers of OCT equipment, we believe that MSI will usher
in a new technological revolution in the fabrication of OCT. Firstly, the

neglect of MSI signifies an insufficient exploration by the industry on the
raw data collected by OCT devices, with only a focus on conventional
structural information (referring to 3D structural data). However, the
amount of information supplied by OCT devices is far more extensive than
this, as demonstrated by MSI; Secondly, the capacity to provide MSI will
undoubtedly emerge as a highlight of OCT devices, and offering additional
functions also reflects the technical prowess of the company; Finally, the
continuous quest for innovative and valuable technologies will become an
enduring and valuable custom for businesses. We call upon the entire OCT
device manufacturing sector to incorporate this technology into their
machinery, which involves almost zero cost.

In reality, this study also has several aspects that require further
investigation. For instance, among different combinations of spectral ima-
ges, some combinations significantly improve the accuracy of RLS, such as

Fig. 7 | Apply MSI to general RLS methods on VMS dataset. a–c shows a com-
parison of predictions before and after adding MSI on three methods, ReLayNet,
EMV_Net, LightReSeg. The red dashed boxes in the figures provide annotations for

obvious intra-class errors or inter-class ambiguities. d–f shows the absolute error
distribution between the predicted and true values of three methods, ReLayNet,
EMV_Net, LightReSeg, with some regions annotated using local zoom-in images.

https://doi.org/10.1038/s41746-025-01446-z Article

npj Digital Medicine |            (2025) 8:39 10

www.nature.com/npjdigitalmed


No.1&4&7 in Fig. 4c andNo.3&5&7 in Fig. 5c, while others onlymarginally
enhance it, such asNo.1&5&7 in Fig. 4c andNo.2&3&6 in Fig. 5c. However,
the internal patterns are not easy to discover.Webelieve that addressing this
issue could start from several aspects. Firstly, the light of different central
wavelengths incident on the retinal layers causes varying degrees of back-
scattering due to the physiological structure and elemental composition
differencesof each layer. Yet, it is challenging to precisely quantify how these
differences contribute to the enhancement of RLS accuracy. Certainly, we
can begin with fundamental optical incidence and reflection experiments,
ranging from basic chemical elements to various retinal layer cells, ulti-
mately conducting experiments on animals and even humans. This would
thoroughly investigate the differences in backscattering rates of different
spectrum on retinal layers and identify the main factors causing these dif-
ferences. Secondly, there is a need to further explore the internal mechan-
isms of DLmodels, to comprehensively understand howDLmodels extract
MSI from different spectral combinations and in which combinations DL
models excel at obtaining MSI. However, current experimental conditions
do not allow for the smooth resolution of the aforementioned uncertainties.

In addition, the MSI in this study is limited by current tech-
nological means and is derived from a continuous fixed spectrum
with narrow bandwidth, such as the spectral range of VMS dataset
being 521 nm–648 nm and that of NIMS dataset being
757 nm–930 nm. If images are selected over a wider spectral band-
width range, it may result in a more significant enhancement of RLS.
If the aforementioned optimal MSI combinations cannot be explored
by analyzing spectral patterns, it raises the possibility of testing all
potential combinations using an exhaustive approach. Taking the
combination of three different central wavelengths as an example,
assuming that spectral images are taken at intervals of 1nm center
wavelengths on the VMS dataset, there would be at least approxi-
mately 2 million combinations. Therefore, computational power and
time cost are the main constraints for the exhaustive method.
Besides, the quality of single spectral images is affected by two main
factors: one is the center wavelength, and the other is the spectral
intensity of the original OCT light source in different wavelength
ranges. Therefore, it is challenging to evaluate the contribution of
different single spectral images to the segmentation accuracy of the
original image.

When applying MSI to general retinal layer methods, we design a
specializedMSI encoder specifically designed toextract spectral information
fromMSI images, which indeed increases the computational complexity of
the model. The reason why we design the MSI encoder is that: firstly, the
sub-band spectral width of MSI images Δλ is much lower than that of raw
images. According to the OCT axial resolution formula δz ¼ 2 ln 2

π
λ20
Δλ, the

optical axial resolution of MSI images δz is lower than that of raw images,
this leads to the inability to improve segmentation performance by directly
using concatenating as an input during the research process; Secondly, we
hope to conveniently apply the spectral information to general retinal layer
segmentation methods, so we design the MSI encoder specifically for MSI
images.Our immediate objective is to advance in this direction by designing
a MSI encoder that strikes an optimal balance between being light-weight
and ensuring high segmentation accuracy.

In summary, we have discovered for the first time the enhancing effect
of MSI on RLS accuracy. Specifically, this includes: First, compared to tra-
ditional single-spectrum imagery, our use of equal-bandwidth MSI images
yields higher segmentation accuracy; Second, we have identified that
bandwidth, quantity, and spectral combinations are the main factors
affectingMSI; Third, the application of MSI to general RLS methods shows
significant improvement, with similar patterns across different spectral
ranges, proving the universality ofMSI. In the future, we will build upon the
current research to further explore precise segmentation of lesion areas in
fundus diseases based on MSI, as well as classification studies of common
ophthalmic diseases using MSI. At the same time, further promoting this
work to the OCT manufacturing industry and researchers based on OCT
images promotes the transformation and upgrading of the entireOCT field.

Methods
The principle of MSI
The fundamental principle of OCT involves directing a light beam onto the
tissue or specimen to be imaged. The light beam is reflected by microscopic
structures at various depths. By measuring the reflected light, as well as the
intensity of the reflected or backscattered light, and converting the reflection
information obtained from different positions into digital signals, which are
then processed by a computer, it is possible to transform this data into two-
dimensional or three-dimensional images. This process reveals the micro-
scopic structures of the layers within the imaged tissue5.

As shown in Fig. 1a, firstly, we performFFT transformation on the raw
spectrum to obtain the raw spectral image. Then, we convolve the raw
spectrum of OCT images by adding identical Gaussian windows at seven
different positions, resulting in seven sub-band spectrums with center
wavelengths of 778 nm, 799 nm, 820 nm, 841 nm, 863 nm, 884 nm, and
905nm, respectively, and they are all of equal-bandwidth spectrum.Byusing
these 7 new sub-band spectrums to simultaneously image the retina, OCT
images containing 7 different spectral information at the same location can
be obtained after FFT transformation. At this point, we complete the first
step, which is how to obtain multi-spectral images.

We randomly select three images generated from the No.1, No.3 and
No.5 spectrum, as shown in Fig. 1b, and then we average the pixel values of
each layer inNo.1,No.3 andNo.5 images toobtaindenoised smooth images.
It’s difficult for us to distinguish the difference between these denoised
images with the naked eye, but according to the formula:

SCR ¼ LPVNo:n

LPVNo:m
; ð1Þ

where the LPV represents the pixel values of each layer, No.n and No.m
represent the nth and mth spectral images, m ≠ n, and SCR represents the
spectral ratio. Upon calculation, under the premise of 0.3 times the raw
spectral bandwidth, the SCR values for No.1 andNo.3 are as follows: NFL is
1.041, GCL is 1.057, INL is 1.370, OPL is 1.131, ONL is 1.298, ELM is 1.665,
OS is 1.119, RPE is 1.054, respectively. And the the SCR values for No.1 and
No.5 are as follows: NFL is 1.100, GCL is 1.301, INL is 2.044, OPL is 1.376,
ONL is 2.588, ELM is 2.077,OS is 1.097, RPE is 1.148, respectively. The SCR
values for No.3 and No.5 are as follows: NFL is 1.056, GCL is 1.230, INL is
1.490, OPL is 1.216, ONL is 1.991, ELM is 1.247, OS is 0.980, RPE is 1.090,
respectively.We can observe distinct differences among the various spectral
images.

When different combinations are used, these differences undergo
significant changes. As the number of spectral images increases, the infor-
mation about these differences becomes more abundant. We refer to this
differential information as a manifestation of MSI. Furthermore, we have
employed a univariate analysis approach to compare the SCR performance
on different spectral image combinations for each retinal layer, as presented
in Table 2. For example, when comparing the differences between No.1&2
and the other combinations on theNIMSdataset, we observe the P values as
follows: P value of 0.00785 (p < 0.05), 0.00785 (p < 0.05), 1.0, 0.00785
(p < 0.05), and 0.00785 (p < 0.05) when comparing on the No.1&2 with
No.1&3, No.1&4, No.1&5, No.1&6, No.1&7, respectively. On the VMS
dataset, we observe the P values as follows: P value of 0.00785 (p < 0.05),
0.00785 (p < 0.05), 0.00785 (p < 0.05), 0.00785 (p < 0.05) and 0.05468 when
comparing on the No.1&2 with No.1&3, No.1&4, No.1&5, No.1&6,
No.1&7, respectively. Our findings reveal significant differences in MSI
across most of these combinations. Additionally, the performance of MSI
varies across different spectral ranges. This further underscores that MSI
encompasses a wealth of nonlinear information, offering an abundant
resource for DL-based RLS.

The framework of MSI applied to RLS method
Traditional DL-based RLS methods adopt an encoder-decoder structure
and typically include a multi-scale feature extraction mechanism. For
instance, ReLayNet utilizes a U-shaped network that first performs multi-
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scale feature extraction on the input image in the encoder part, followed by
upsampling to merge these multi-scale features, ultimately producing the
target image. Our approach involves extracting and integrating multi-scale
features of the same dimensions as the original method, as illustrated in Fig.
1c. Initially, the raw spectral image undergoes multi-level feature extraction
using the encoder part of the RLS method. Similarly, the MSI images are
processed through a spectral MSI encoder to obtain multi-scale features of
identical dimensions. Subsequently, features at the same level are merged,
resulting in a feature map that encompasses both retinal structural infor-
mation andMSI. This merged feature map is then fed into the RLS decoder
to complete the image upsampling restorationprocess, thenfinal segmented
image is obtained. The simplicity of thismethod is highlighted by the feature
fusion step, which only requires a concatenation operation. For methods
with fewer multi-scale features, such as DeepLab33 with only two levels of
scale, partial feature fusion suffices. Integrating multi-spectral information,
regardless of the number of scales employed, enhances the performance of
RLS methods.

The MSI dataset
The spectral range of the NIMS dataset is 757 nm–930 nm, with its raw
spectral images utilizing the full bandwidth. The MSI consists of seven
segments, namely No.1 (central wavelength at 778 nm), No.2 (central
wavelength at 800 nm), No.3 (central wavelength at 821 nm), No.4 (central
wavelength at 843 nm), No.5 (central wavelength at 865 nm), No.6 (central
wavelength at 886 nm), andNo.7 (central wavelength at 908 nm), eachwith
a bandwidth that can be defined according to needs. There are twomethods
to obtain MSI images: one is to customize OCT devices with different
waveband sources, and the other is to employ spectral shaping techniques.
The latter method is adopted in this study due to the higher experimental
costs associated with the former. The subjects are volunteers recruited for
the study, totaling 100 healthy individuals. The inclusion criteria are as
follows: (1) absenceof anyophthalmicdiseases; (2) visual acuity greater than
0.6 in both eyes; (3) normal eye position, capable of central fixation, clear
refractivemedia, and able to undergo ocularOCTexamination; (4) 50males
and 50 females. The exclusion criterion is (1) unclear structural display on
OCT imaging. The dataset consisted of 500B-scan samples, each containing
8 types of spectral data images and a ground truth image supervised and
marked by ophthalmology experts, thus the NIMS dataset contained a total
of 4500 images. The dataset is divided into training and test datasets at an
8 : 2 ratio, with the training dataset containing 400 samples (3600 images)
and the test dataset containing 100 samples (900 images). Each image has a
dimension of 480 × 400. The spectral range of the VMS dataset is
521 nm–648 nm, and its raw spectral images utilize the full bandwidth. The
MSI for this dataset is also divided into 7 segments, namely No.1 (central
wavelength at 532 nm), No.2 (central wavelength at 542 nm), No.3 (central
wavelength at 560 nm), No.4 (central wavelength at 574 nm), No.5 (central
wavelength at 596 nm), No.6 (central wavelength at 610 nm), and No.7
(central wavelength at 635 nm). It’s inclusion criteria and dataset parti-
tioning criteria are consistent with those of the NIMS dataset.

The DL component of this study is conducted using the PyTorch
framework, with training performed using the Adam optimizer featuring
cross-entropy loss. It adopts a 5-fold cross-validation approach and the
maximum number of training epochs is 200 on both datasets. The initial
learning rate is set to 0.001 and is gradually reduced by half every 20 epochs.
Data augmentation includes a horizontal flip with a probability of P = 0.5,
and random central rotation within ± 10 degrees with a probability of
P = 0.5. All experiments are carried out on four NVIDIA A100 GPUs.

Code availability
The underlying code for this study are available from the corresponding
author upon reasonable request.

Received: 19 September 2024; Accepted: 10 January 2025;
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