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Leveraging Spectrum to Enhance the Accuracy of
Retinal Layer Segmentation
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Abstract—In the early development of many fundus diseases,
changes in retinal layer thickness occur, and optical coherence
tomography (OCT) serves as the gold standard for detecting
variations in retinal layer thickness. Consequently, extensive
research has been conducted on retinal layer segmentation (RLS)
based on OCT images. However, current breakthroughs in RLS
primarily focus on innovations in deep learning (DL) models
and improvements in training strategies, which constrains the
means to enhance the accuracy of RLS. We have discovered a
new dimension of spectral information that can be utilized to
improve the precision of RLS. Experimental results demonstrate
that the accuracy of RLS, measured by the mIoU metric, can be
maximized with an improvement of up to 1.57 percentage points,
and that different combinations of spectral images vary in their
effectiveness at enhancing segmentation outcomes. Our study will
introduce novel research avenues in the domain of RLS based
on DL.

Index Terms—Retinal layer, Segmentation, Spectral informa-
tion, TransUnet, Gaussian window

I. INTRODUCTION

The ubiquity of modern electronic devices and detrimental
visual habits have precipitated a surge in eye-related ailments,
compelling researchers to advance the diagnostic timeline.
Notably, the nascent phases of numerous retinal diseases are
marked by alterations in retinal layer thicknesses: glaucoma,
for instance, often manifests early with a reduction in NFL
thickness in tandem with visual field impairment [1], [2]. Fur-
thermore, the progression of certain systemic and neurological
conditions can also impact retinal layer thicknesses [3]. As
OCT stands as the paramount tool for discerning variations
in retinal layer thickness, extensive investigations have been
undertaken concerning the segmentation of retinal layers based
on OCT imaging [4].

DL has gained significant popularity in recent years, with
numerous studies focusing on its application to OCT images.
These include fundus disease detection [5], OCT image en-
hancement [6], and 3D reconstruction of OCT images [7].
Naturally, this also encompasses research on RLS based on
DL [8]. Currently, the work in this field is primarily con-
centrated on three areas: firstly, enhancing DL models [9],
[10]; secondly, updating DL training strategies [8], [11]; and
thirdly, concentrating on specific diseases [3]. Overall, there
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is a continuous pursuit of higher accuracy in RLS while
incorporating increasingly complex conditions. However, the
primary breakthrough point at present is largely within DL
methodologies.

Recent research has demonstrated that near-infrared light,
when used to penetrate the retinal pigment epithelium, is
more effective than visible light [12]. Consequently, there are
significant differences in certain layers of the retina observed
in OCT images from different central wavelength spectrum.
Moreover, according to the principle of multi-spectral fundus
cameras, we understand that different wavelengths of light,
when shining on the same fundus tissue, produce different
imaging effects due to varying backscattering rates [13].
Therefore, we hypothesize that imaging the same retina in the
fundus using light with different center wavelengths will not
only yield structural information but also additional spectral
information. In this context, the objective of this paper is
to investigate whether spectral information can enhance the
accuracy of existing RLS based on structural information.

The primary contributions of this article are as follows:
1) For the first time in RLS research, we have introduced a

novel dimension of information: spectral data. This ad-
vancement significantly improves upon the conventional
reliance on structural information from OCT images
alone, opening new avenues for investigation in this field.

2) We have examined the differences between OCT images
with varying center wavelength spectrum and confirmed
the existence of spectral information.

3) By inputting images containing spectral information into
general retinal layer methods and comparing them to im-
ages without spectral information, we have demonstrated
that spectral information can enhance the accuracy of
RLS.

II. METHOD

A. Obtaining Spectral Images by Gaussian Windows

The primary component of the OCT imaging system is the
Michelson interferometer optical path. After the light emitted
by the light source is split, one path of light enters the sample
arm and, upon focusing, converges onto the surface of the
sample. The other beam enters the reference arm and focuses
onto the surface of a planar mirror. The return beams from both
arms interfere and enter the detection arm. The returned light,
which carries information about the sample, is detected by the
detection device. Following subsequent signal processing and
analysis, the structural information and optical properties of
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Fig. 1. (a) Add Gaussian windows at different positions in the raw spectrum,
(b) three new spectrum obtained by convolving Gaussian windows at different
positions with the raw spectrum.

the sample can be reconstructed [4]. Among these, the differ-
ence in the central wavelength of the light source spectrum
can cause the same retinal tissue to exhibit different optical
properties. Based on this, we generate spectrum S′(x, µ) with
different central wavelengths by adding Gaussian windows at
different positions on the raw spectrum S(x), as shown in the
following formula:

G(x, µ) = e
−(x−µ)2

2×σ2 , (1)

where G(x, µ) represents the Gaussian function, µ represents
a coefficient related to the position of the Gaussian window,
σ represents a coefficient related to the shape of Gaussian
windows. Then use G(x, µ) to convolve the raw spectrum
S(x) to obtain the sub-band spectrum S′(x, µ), as shown in
Eq. 2.

S′(x, µ) = G(x, µ)⊗ S(x), (2)

In Fig. 1(a), Gaussian windows are incorporated at 778nm,
821nm, and 865nm into the raw spectrum. These are then
convolved with the raw spectrum to generate three distinct
sub-band spectrum, each with a different central wavelength,
as illustrated in Fig. 1(b). Employing these three modified
spectrum for concurrent retinal imaging allows the acquisition
of OCT images of the retinal layers. These images maintain
consistent structural information while incorporating spectral
data from varying central wavelengths, as shown in Fig. 2(a),
(b) and (c).

Fig. 2. One sample of the dataset, including three OCT images from different
spectrums and one GT annotated image. Additionally, the retinal layers
represented by the colors of each category in GT are provided.

B. DL-based Segmentation Methods

In this study, we conduct experiments using three DL based
segmentation methods: LightRsSeg [9], Segformer B0 [14],
and TransUnet [15]. LightRsSeg is a relatively new lightweight
RLS method, which is improved based on a U-shaped encoder
decoder network and combines modules such as TransFormer
and MAA. Segformer considers efficiency, accuracy, and ro-
bustness simultaneously. It designs a novel position encoding
free layered transformer encoder and redesigns the encoder
and decoder sections, achieving sota performance on multiple
datasets. TransUnet employs a segmentation network grounded
on Transformer, merging CNN with Transformer to overcome
the constraints of conventional convolutional neural networks
in modeling extensive-range dependencies and managing large
image dimensions.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset

The dataset comprises scan data from 100 eyes of 50
healthy volunteers, with each eye undergoing a macular scan
and 512 B-scan images captured per eye. From each eye’s
data, 5 B-scan images are selected, each containing 3 OCT
images from different spectrum. Consequently, the dataset
totals 500 samples, each comprising 3 OCT images from
varying spectrum and one annotated GT image, summing up
to 2000 images. The annotation image delineates 9 categories
of structures, as shown in Fig 2. This dataset is partitioned
into training set and testing set, encompassing 400 cases (1600
images) and 100 cases (400 images), respectively. Each image
measures 480 × 400 pixels.

B. Implementation Details

The experiment is implemented based on the PyTorch and
trained with the Adam optimizer with the cross-entropy loss.
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The initial learning rate is set to 0.001 which is then grad-
ually halved every 40 epochs. Data augmentation is applied,
including horizontal flipping with probability P=0.5, random
center rotation with probability P=0.5. All experiments are
conducted on 4 NVIDIA A100 graphics cards. We evaluate
the segmentation performance quantitatively using the Dice
similarity coefficient (DSC), mean Intersection over Union
(mIoU), and mean pixel accuracy (mPA).

C. Results and Analysis

1) Differences of retina between different spectrum:
Based on our analysis, utilizing light with diverse central
wavelengths to image the same retinal region in the fundus
yields not only structural information but also spectral infor-
mation. Consequently, we employ a direct method to contrast
the variances across different spectral images, as illustrated in
Fig. 3. We aggregate and compute the mean pixel values within
each retinal stratum in OCT images No.1, No.2, and No.3,
resulting in a singular average pixel value for each retinal
layer. By subtracting these mean pixel values between two
distinct spectrum, we derive the corresponding differences for
each layer, depicted in Fig. 3 (a), (b), and (c). Furthermore, by
dividing the mean pixel values of each retinal layer between
two separate spectrum, we obtain the respective ratios for each
layer, shown in Fig. 3 (d), (e), and (f).

Upon examining Fig. 3, it becomes evident that both direct
subtraction and division reveal substantial disparities in the
mean pixel values across retinal layers between any two
spectral bands. This is particularly apparent in Fig. 3(a),

Fig. 3. Qualitative analysis of differences in retinal layers between different
spectral images.

TABLE I
QUANTITATIVE ANALYSIS OF DIFFERENCES IN RETINAL LAYERS BETWEEN

DIFFERENT SPECTRAL IMAGES.

Layers

Dividing the corresponding
retinal layer pixel values

Subtraction of corresponding
retinal layer pixel values

No.1&2 No.1&3 No.2&3 No.1&2 No.1&3 No.2&3

NFL 0.92 0.99 1.08 -6.63 -0.86 5.77
GCL 0.96 1.30 1.35 -1.04 6.03 7.07
INL 1.11 1.75 1.57 1.79 7.43 5.64
OPL 1.04 1.36 1.31 1.35 9.61 8.26
ONL 1.08 2.15 1.98 1.27 8.90 7.63
ELM 1.68 2.74 1.63 19.34 30.25 10.91
OS 1.08 1.11 1.03 13.53 18.55 5.02
RPE 1.04 1.16 1.12 6.18 24.23 18.06

where nearly adjacent layers exhibit significant differences.
If such differences did not exist between different spectral
images, subtraction would result in all zeros, and division
would yield all ones. Consequently, our analysis uncover
notable variations in the mean pixel values of each retinal
layer across distinct spectral images. Tab. I provides the exact
values computed for this image, revealing not only are there
differences between retinal layers, but also distinct variations
among different spectral combinations. The differences ob-
served between combinations No.1&2 and No.1&3, as well
as the inconsistencies found between No.1&2 and No.2&3,
underscore the significant differences in the spectral images
of diverse retinal layers. We employ the mean pixel value of
each layer as a straightforward method to compare differences
among various retinal layers in OCT images with differing
center wavelengths. While this approach does not encompass
all spectral information, it undoubtedly serves as evidence
for the presence of spectral information. This implies that
OCT images, when captured using different center wavelength
spectrum, yield not only structural details but also additional
spectral information alongside the structural information.

2) RLS with Spectral Information: Based on the conclu-
sion that there is spectral information between retinal layer
images with different center wavelength spectrums, we further
conduct RLS research with additional spectral information.
We conduct three experiments using LightReSeg, Segformer,
and TransUnet for segmentation. The first group uses a
single spectral image as input, without introducing spectral
information. Each method has three settings: No.1, No.2,
and No.3; The second group involves inputting two spectral
images with different center wavelengths simultaneously. In
addition to structural information, the input images also con-
tain spectral information between the two pairwise images.
Each segmentation method has three combinations: No.1&2,
No.1&3, and No.2&3; The third group adopts the combination
of No.1&2&3 to simultaneously input three images into the
network. The specific experimental settings are shown in the
combination column in Tab. II.

From Tab. II, we can see that the accuracy of RLS varies
among different spectral images. In the LightReSeg method,
we find that the overall segmentation accuracy of No.2 is
higher, while No.3 is lower. In terms of mIoU index, No.2
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TABLE II
THREE SEGMENTATION METHODS, SEGFORMER, TRANSUNET, AND LIGHTRESEG, ARE EMPLOYED TO DERIVE SEGMENTATION OUTCOMES ACROSS

VARIOUS SPECTRAL IMAGE COMBINATIONS.

Method Combinations Dice Score mIoU mPANFL GCL INL OPL ONL ELM OS RPE Ave

LightReSeg

No.1 90.24 95.33 90.37 83.17 94.97 90.74 86.26 94.49 90.84 83.23 97.26
No.2 90.98 95.37 90.42 82.35 94.85 91.37 86.91 94.42 90.99 83.47 97.22
No.3 90.41 95.60 90.38 83.19 95.46 91.50 84.09 94.36 90.81 83.16 97.57

No.1&2 90.81 95.44 90.48 83.43 95.15 91.22 86.63 94.71 91.13 83.70 97.39
No.1&3 90.49 95.63 90.65 83.18 95.32 91.44 86.96 94.85 91.21 83.85 97.59
No.2&3 90.80 95.30 90.55 83.82 95.08 91.41 87.44 94.67 91.26 83.93 97.32

No.1&2&3 90.87 95.72 90.79 83.80 95.48 91.75 87.46 94.83 91.47 84.29 97.65

Segformer

No.1 90.24 94.84 89.96 83.42 95.17 90.85 86.40 94.66 90.83 83.21 97.22
No.2 90.59 95.16 90.61 83.95 95.32 91.65 87.89 94.72 91.36 84.10 97.47
No.3 90.74 95.55 90.41 82.27 95.15 91.38 86.47 94.46 90.97 83.43 97.51

No.1&2 90.81 95.84 91.21 84.49 95.68 91.66 86.97 94.97 91.59 84.48 97.73
No.1&3 90.17 95.68 90.99 84.37 95.64 91.87 87.46 95.00 91.53 84.38 97.68
No.2&3 90.82 95.54 90.70 83.43 95.62 92.00 87.83 95.09 91.52 84.37 97.70

No.1&2&3 91.28 95.84 91.15 84.34 95.80 92.01 87.53 95.08 91.76 84.78 97.77

TransUnet

No.1 91.03 95.60 90.18 83.04 95.50 91.51 87.42 95.27 91.35 84.07 97.67
No.2 91.67 95.85 90.80 84.26 95.64 91.92 87.18 95.03 91.68 84.64 97.75
No.3 90.41 95.69 90.77 83.37 95.57 91.84 86.17 94.53 91.20 83.82 97.62

No.1&2 91.89 96.03 91.06 84.49 95.79 92.15 87.69 95.18 91.92 85.04 97.82
No.1&3 91.71 95.94 91.06 84.14 95.80 92.21 88.37 95.30 91.95 85.10 97.81
No.2&3 91.68 95.82 90.77 84.38 95.67 92.20 87.85 95.26 91.83 84.91 97.76

No.1&2&3 91.92 95.91 91.25 84.90 95.83 92.21 87.84 95.28 92.02 85.22 97.83

is 0.24 and 0.31 percentage points higher than No.1 and No.3,
respectively; In the Segformer method, we find that the overall
segmentation accuracy of No.2 is higher, while No.1 is lower.
On the mIoU index, No.2 is 0.89 and 0.67 percentage points
higher than No.1 and No.3, respectively. We analyze that
there are two main reasons for this difference: Firstly, these
OCT images are different because they are generated from
different sub-band spectrum. Secondly, there are differences
in the feature extraction ability of different DL models, which
we infer may be the reason for the differences in RLS between
different spectral images.

When we input different spectral images pairwise, we find
that there are significant differences in segmentation between
different combinations, but from the perspective of evaluation
indicators, this difference is significantly reduced. In the
TransUnet method shown in Tab. II, the three combinations
of No.1&2, No.1&3, and No.2&3 have a difference of only
0.12 percentage points between their maximum and minimum
values on the average of each layer in the Dice Score, while
the difference between their maximum and minimum values
in No.1, No.2, and No.3 is 0.48 percentage points. Similarly,
in the Segformer method, they are 0.07 and 0.53 percentage
points, respectively. This indicates that after adding spectral
information, the difference in segmentation accuracy between
pairwise spectral image combinations is smaller than the
difference between single spectral images. We infer that the
primary reason is that there are already some common factors
between the combinations of spectral images, which reduce the
differences, such as the presence of a No.1 in both No.1&2
and No.1&3.

When we input three images from the combination of

No.1&2&3 into the network simultaneously, we find that the
segmentation accuracy of the entire retina layer reaches the
highest level. Specifically, on the mIoU metric, the LightReSeg
method outperforms No.3 by 1.13 percentage points on the
No.1&2&3 combination, the Segformer method outperforms
No.1 by 1.57 percentage points on the No.1&2&3 combi-
nation, and the TransUnet method outperforms No.3 by 1.4
percentage points on the No.1&2&3 combination.

Tab. II all shows the average trend of three segmentation
methods on the Dice Score in three different combinations.
We can see that when using a single spectral image, the seg-
mentation accuracy of all three methods is the lowest. When
combining pairwise spectral images, the average segmentation
accuracy of all three methods is improved. When three differ-
ent spectral images are simultaneously input into the network,
the segmentation accuracy of all three segmentation methods
reaches the highest level. We infer that with the increase of
spectral information, the segmentation accuracy of various
methods will show a trend of improvement, which also means
that introducing spectral information will be beneficial for
improving the segmentation accuracy of retinal layers.

In addition to quantitative analysis, we also conduct qual-
itative analysis to provide a more comprehensive evaluation.
As shown in Fig. 4, we randomly select two images from
the test dataset in each method to observe the effect of
different spectral combinations on segmentation ability. In
the LightReSeg method, we can see that there are obvious
intra-class errors in the predicted images of group No.1 (RPE
category results appeared in the NFL category), while in
groups No.1&2, we find that this intra-class error disappeared
directly, which we believe is the result of introducing spectral
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Fig. 4. Qualitative analysis of the segmentation performance of three
segmentation methods for each spectral combination.

information. In another predicted image of Group No.1, there
is also a clear inter class ambiguity in the macular area.
However, as the number of spectral images increased, we
observe that the stratification of the macular area achieved the
best segmentation results in Groups No.1&2&3. For example,
the TransUnet method showed significant intra-class errors in
the first predicted image of group No.3, which are significantly
reduced in groups No.1&3 and completely disappeared in
groups No.1&2&3. This further confirms the significant im-
provement effect of spectral information on RLS performance.

D. Limitation

In this study, we cannot determine whether an unlimited
increase in spectral information will consistently improve
the segmentation accuracy of RLS, as our combination only
consists of up to three different spectral images. If we continue
to increase the number of images input into the network
simultaneously, the results may increase, decrease, or even
remain unchanged. In addition, this study use the method of
directly merging different spectral images into the network,
which may not be the best way to utilize spectral information.
In the future, spectral information may have a separate carrier
like structural information, such as image data or point cloud
data.

IV. CONCLUSION

In this study, we investigate for the first time the differences
between spectral images with different central wavelengths and
confirm that spectral data helps improve the accuracy of RLS.
And we also find that increasing the number of spectral images
within a certain range gradually improves the accuracy of RLS.
In the future, we will further explore the factors affecting
spectral information and conduct disease-based RLS research
based on spectral information.
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